

KawanSoft SAS, with capital of € 2,000
R.C.S registration Paris B 534 990 981

11, rue de Milan - 75009 Paris
 Tel : +33 (0)1 77 69 59 58 - Fax : +33 (0)1 72 74 95 39 - Web: www.kawansoft.com

Awake FILE v3.1 – Tutorial

November 16, 2015

Table of Contents

1 FUNDAMENTALS... 3

1.1 Technical operating environment ..4

2 INSTALLATION .. 5

2.1 Installation files ..5

2.2 Server installation...5

2.3 Client installation (including Android) ...5
2.3.1 Android Project settings ..5
2.3.2 Eclipse settings for Android project ...6

3 CONFIGURATION ON THE SERVER SIDE ... 7

3.1 The Server File Manager Servlet ..7
3.1.1 Configure the webapp web.xml ...7

3.2 Configurators fundamentals ..7
3.2.1 CommonsConfigurator interface ...8
3.2.2 FileConfigurator interface ...8
3.2.3 Passing concrete Configurator classes ...9

3.3 Coding CommonsConfigurator ..9
3.3.1 Extracting a Connection from the pool ..9
3.3.2 Coding Basic Security settings ... 10

3.4 Coding FileConfigurator ... 14
3.4.1 Defining the user files locations .. 14
3.4.2 RPC rules for calling Java methods from the client side .. 16

3.5 Testing you server configuration ... 19

4 CLIENT SIDE PROGRAMMING ... 20

4.1 The RemoteSession class .. 20
4.1.1 Session creation & authentication ... 21

Awake FILE Tutorial – v3.1 2

4.1.2 Defining a proxy ... 21
4.1.3 Handling Exceptions thrown by RemoteSession constructors ... 22
4.1.4 RPC: Calling Java methods on the Awake FILE Server .. 22
4.1.5 Uploading & Downloading files ... 24
4.1.6 Handling Exceptions thrown by RemoteSession methods ... 24

4.2 The RemoteFile class ... 25
4.2.1 Using FilenameFilter and FileFilter ... 26
4.2.2 Handling Exceptions thrown by RemoteFile methods .. 26
4.2.3 Example of RemoteFile usage .. 27

4.3 The RemoteInputStream and RemoteOutputStream classes .. 28

4.4 Using Progress Bars with file upload & download ... 29

5 AWAKE FILE INTERNALS ... 32

5.1 Session security ... 32
5.1.1 The default Authentication Token creation .. 32
5.1.2 Creating your own Authentication Token... 33

5.2 Data transport ... 33
5.2.1 Transport format ... 33
5.2.2 Content Streaming & memory management ... 33
5.2.3 Chunked upload of large files ... 33
5.2.4 Chunked download of large files ... 34
5.2.5 File chunking and statefull/stateless architecture .. 34
5.2.6 Large file upload & download recovery ... 34
5.2.7 Upload and download recovery simple code example ... 35

5.3 Stateless session management ... 36

6 ADVANCED TECHNIQUES .. 37

6.1 Using multiple RemoteSession in Threads ... 37

6.2 Using RemoteSession to different Awake FILE Servers ... 37

6.3 Session parameters .. 39

6.4 Http session encryption ... 41

6.5 How to obfuscate your apps on the client side ... 42

6.6 Anonymous Notifications to Kawan Servers .. 43

6.7 Managing temporary files... 43

7 TROUBLESHOOTING .. 44

7.1 Session hang with Java 7+... 44

7.2 Defining a proxy with Java 7+ .. 44

Awake FILE Tutorial – v3.1 3

1 Fundamentals

Awake FILE is a secure Open Source framework that allows to program very easily
file uploads/downloads and RPC through http. File transfers include powerful
features like file chunking and automatic recovery mechanism.

Security has been taken into account from the design: server side allows
to specify strong security rules in order to protect the files and to
secure the RPC calls.

Awake FILE is licensed through the GNU Lesser General Public License (LGPL
v2.1): you can use it for free and without any constraints in your open source projects
and in your commercial applications.

 The Awake FILE framework consists of:

 A Client Library.

 A Server Manager.

 User Configuration classes injected at runtime (start of server container).

The Client Library is installed on the client side - typically a PC or an Android device.
The client application - typically a Desktop or Android application - accesses the
remote files or java classes it through APIs. The execution of each Awake FILE
command is conditioned by the rules defined in the User Configuration classes.

All communications between the PC and the Server are done using HTTP protocol
on the standard 80 and 443 ports. (Communications may be secured using
SSL/TLS).

This user guide covers:

 Configuration on the server side.

 Programming remote files access, RPC calls and file uploads/download on the
client side.

 Awake FILE Internals.

 Advanced techniques.

Awake FILE Tutorial – v3.1 4

1.1 Technical operating environment

Awake FILE is 100% written in Java, and functions identically under Android
Microsoft Windows, Linux and all versions of UNIX supporting Java 6+ and Servlet
2.5.

The following environments are supported in this version:

JVM (Java Virtual Machine)

Android Dalvik 4.0.3+

Windows Oracle Java SE 6, Java SE 7 and Java SE 8

UNIX/Linux Oracle Java SE 6, Java SE 7 and Java SE 8
OpenJDK 6, OpenJDK 7, OpenJDK 8

OS X Apple Java SE 6 for OS X.
Oracle Java SE 7 for OS X 10.7.3+
Oracle Java SE 8 for OS X 10.8+

Servlet Containers

All Servlet containers that implement the Servlet 2.5+ specifications.

Awake FILE Tutorial – v3.1 5

2 Installation

2.1 Installation files

Download and unzip awake-file-3.1.x-bin.zip or download and untar

awake-file-3.1.x-bin.tar.gz.

2.2 Server installation

Add the jars of the /lib-server subdirectory to your Servlet container webapp library

folder. (Typically in /WEB-INF/lib).

Create a “Server” project and add the jars of the /lib-server subdirectory to your

development CLASSPATH.

Maven users:

<groupId>org.awake-file</groupId>

<artifactId>awake-file-server</artifactId>

<version>3.1.x</version>

(x exact value is on download page).

Note: Awake FILE requires to define a Servlet in your web.xml configuration file.

We will detail this in 3.2.3 Passing concrete Configurator classes.

2.3 Client installation (including Android)

Create a “Client” project and add to your development CLASSPATH the path to the jars

located in the /lib-client subdirectory of your installation folder.

Maven users:

<groupId>org.awake-file</groupId>

<artifactId>awake-file-client</artifactId>

<version>3.1.x</version>

(x exact value is on download page).

2.3.1 Android Project settings

Add the 3 following lines to your AndroidManifest.xml:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

http://www.awake-file.org/awake-file-download.html
http://www.awake-file.org/awake-file-download.html
http://www.awake-file.org/awake-file-download.html

Awake FILE Tutorial – v3.1 6

2.3.2 Eclipse settings for Android project

1) Create a folder and copy /lib-client jars into the folder. (Not necessary to

copy the jar into Android libs.)
2) Select all added jars, right click and “Build Path” “Add to Build Path”.
3) Make sure that all added jars are checked in “Java Build Path “Order and

Export”.

Note: the source files archive awake-file-3.1.x-src.zip contains a ready to use

Eclipse Android project: awake-file-android-sample

Awake FILE Tutorial – v3.1 7

3 Configuration on the server side

The Configuration on the server side addresses:

 Client login and password verification.

 Basic Security settings.

 Defining the uploaded user files location on the server.

 RPC security settings.

3.1 The Server File Manager Servlet

All commands sent by the client side are received by the Server File Manager
Servlet. The Manager Servlet then:

 Authenticates the client call.

 For file commands :
o Executes the file command asked.
o Sends the result of the statement back to the client side.

 For RPC commands :
o If the RPC command matches the rules defined by the Awake

Configurators (see below), the Java method command is executed.
Otherwise, an Exception is sent back to the client

o Sends the return value of the Java method to the client.

3.1.1 Configure the webapp web.xml

Add the Server File Manager Servlet to your web.xml:

<servlet>

 <servlet-name>ServerFileManager</servlet-name>

 <servlet-class>org.kawanfw.file.servlet.ServerFileManager</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>ServerFileManager</servlet-name>

 <url-pattern>ServerFileManager</url-pattern>

</servlet-mapping>

3.2 Configurators fundamentals

All server configurations are done through Java classes called “Configurators” in our
terminology. A Configurator is a user-developed Java class that implements one the
Configurator Java interfaces. The Configurator instance is dynamically loaded by the
Awake Server at bootstrap through DI (Dependency injection). The methods of the
Configurator instance are then called internally by the Awake FILE Manager Servlet
when necessary.

Awake FILE Tutorial – v3.1 8

Awake FILE use 2 types of Configurators defined as Java interfaces:

 CommonsConfigurator.

 FileConfigurator.

Note that Awake FILE comes with Default Configurator classes:
it’s not required to write your own Configurator
(in case you only want to test Awake FILE, etc.).

See the Quick Start.

3.2.1 CommonsConfigurator interface

This CommonsConfigurator interface allows to define basic access and security
settings. A concrete implementation code will let you define:

 How to authenticate a remote client user

 How to secure the http session.

 The java.util.logging.Logger that Awake will use for logging.

 Advanced procedures in order to secure the service (IP Banning, session
encryption).

 If needed for the authentication phase, how to get a Connection from the

connection pool.

Awake FILE comes with a default CommonsConfigurator. implementation that may be
extended: DefaultCommonsConfigurator.

3.2.2 FileConfigurator interface

The File Configurator interface lets you define the server settings for the files to
upload/download and the for the client Java calls.

It allows to :

 Define the Awake FILE Server root directory.

 Define if each client username has his own root directory.

 Define a specific piece of Java code to analyse the method name and it's
parameter values before allowing or not it's execution.

 Execute a specific piece of Java code if the method not allowed.

Note that Awake FILE comes with a default FileConfigurator implementation that is

very liberal and should be extended: DefaultFileConfigurator

If no FileConfigurator is implemented, Awake loads and uses the

DefaultFileConfigurator class.

http://www.kawanfw.org/3.1/file-fransfer-over-http-in-android-swing-javafx-quick-start.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/server/CommonsConfigurator.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/server/DefaultCommonsConfigurator.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/server/FileConfigurator.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/server/DefaultFileConfigurator.html

Awake FILE Tutorial – v3.1 9

3.2.3 Passing concrete Configurator classes

Your concrete implementations are passed to Awake as parameters of the
ServerFileManager Servlet in your web.xml configuration file.

 The CommonsConfiguratorClassName parameter lets you define your

CommonsConfigurator concrete implementation.

 The FileConfiguratorClassName parameter lets you define your

FileConfigurator concrete implementation.

<servlet>

 <servlet-name>ServerFileManager</servlet-name>

 <servlet-class>org.kawanfw.file.servlet.ServerFileManager</servlet-class>

 <init-param>

 <param-name>CommonsConfiguratorClassName</param-name>

 <param-value>org.acme.config.MyCommonsConfigurator</param-value>

 </init-param>

 <init-param>

 <param-name>FileConfiguratorClassName</param-name>

 <param-value>org.acme.config.MyFileConfigurator</param-value>

 </init-param>

</servlet>

<servlet-mapping>

 <servlet-name>ServerFileManager</servlet-name>

 <url-pattern>ServerFileManager</url-pattern>

</servlet-mapping>

If you don’t provide a parameter for a Configurator, Awake will use the corresponding
Default Configurator.

3.3 Coding CommonsConfigurator

Now, let’s code our own configuration methods in a concrete implementation of the
CommonsConfigurator interface.

Create a class MyCommonsConfigurator that extends DefaultCommonsConfigurator.
We will then implement our own methods.

3.3.1 Extracting a Connection from the pool

(This is not required and necessary only if you want to use SQL for the other
methods of your CommonsConfigurator implementation).s

The default implementation DefaultCommonsConfigurator.getConnection() extract a

Connection from a Tomcat JDBC Pool <Resource> configured in context.xml.

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/server/CommonsConfigurator.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/server/DefaultCommonsConfigurator.html

Awake FILE Tutorial – v3.1 10

Download a Tomcat JDBC Pool configuration example: context.xml.

You may of course implement you own Connection Pool implementation by

overloading CommonsConfigurator.getConnection()

3.3.2 Coding Basic Security settings

All the Basic Security Settings are optional. If a method is not implemented, the

corresponding method of DefaultCommonsConfigurator will be called.

The basic security settings let you define through a concrete implementation of the
CommonsConfigurator method:

 How to authenticate the remote (username, password) couple send by the
client side.

 Whether the client must be in secured https.

 The list of banned usernames.

 The list of banned IPs.

 A secret value to reinforce the strength of the hash value used as
authentication token.

 A password that will be used to decrypt the http request parameters sent by
the client side.

We will explore some examples:

3.3.2.1 Login method: authenticating client username and password

You don't want your Awake FILE server be accessible to the whole world. Awake
provides a mechanism that allows to check the username and password sent by the

remote client program. This is done through the login method of

CommonsConfigurator interface. If login returns true, access is granted.

The username and password should be checked against an applicative access
mechanism, such as a LDAP directory, a login table in the database, etc.

The following example will check that the username and password passed by the
client match an access list defined in a SQL table of your host database. Add the
method in your MyCommonsConfigurator class:

http://www.kawanfw.org/3.1/src/context.xml

Awake FILE Tutorial – v3.1 11

 /**

 * Our own Acme Company authentication of remote client users. This methods

 * overrides the {@link DefaultCommonsConfigurator#login} method.

 * The (username, password) values are checked against the user_login table.

 *

 * @param username

 * the username sent by client side

 * @param password

 * the user password sent by client side

 *

 * @return true if access is granted, else false

 */

 @Override

 public boolean login(String username, char[] password) throws IOException,

 SQLException {

 Connection connection = null;

 try {

 // Extract a Connection from our Pool

 connection = super.getConnection();

 // Compute the hash of the password

 Sha1 sha1 = new Sha1();

 String hashPassword = null;

 try {

 hashPassword = sha1.getHexHash(new String(password).getBytes());

 } catch (Exception e) {

 throw new IOException("Unexpected Sha1 failure", e);

 }

 // Check (username, password) existence in user_login table

 String sql = "SELECT username FROM user_login "

 + "WHERE username = ? AND hash_password = ?";

 PreparedStatement prepStatement = connection.prepareStatement(sql);

 prepStatement.setString(1, username);

 prepStatement.setString(2, hashPassword);

 ResultSet rs = prepStatement.executeQuery();

 if (rs.next()) {

 // Yes! (username, password) are authenticated

 return true;

 }

 return false;

 } finally {

 // Always free the Connection so that it is put

 // back into the pool for another user

 if (connection != null) {

 connection.close();

 }

 }

 }

Note: the included SshAuthCommonsConfigurator is a concrete

CommonsConfigurator that extends DefaultCommonsConfigurator.

It allows zero-code client (usernname, password) authentication using SSH.

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/server/SshAuthCommonsConfigurator.html

Awake FILE Tutorial – v3.1 12

3.3.2.2 forceSecureHttp method: define if the http request must be in SSL/TLS

It is better to encrypt with SSL/TLS all the http exchange between the client side and
the server. However, this is not mandatory. If you do not need SSL/TLS encryption
(for instance in an Intranet scenario), there is nothing to do : the exchange won’t be
encrypted.

If you want to force https encryption with SSL/TLS, just add the following method in

your MyCommonsConfigurator class:

 /**

 * @return <code>true</code>.

 *

 * Our client programs will be forced to use https in the url parm

 * of the RemoteSession constructor

 */

 @Override

 public boolean forceSecureHttp() {

 return true;

 }

If the client tries to connect to the Awake FILE server using a "http" scheme in the
URL instead of a https address, the server will send back to the client the order to
update the scheme to "https". This will be done silently by the client side, prior
authentication: the username & password will thus be sent encrypted with SSL. All
subsequent server calls in the session will be in secure https.

3.3.2.3 getBannedUsernames method: define banned users

If you want to ban some users, just add a Set<String> getBannedUsernames()

method in your MyCommonsConfigurator class.

Let’s say we want to ban two users :

 /**

 * These usernames must not access our databases: user1 & user2 (In real

 * world case we would retrieve the usernames from a database or a file).

 *

 * @return the usernames that are banned from our server.

 */

 @Override

 public Set<String> getBannedUsernames() throws IOException, SQLException {

 Set<String> set = new HashSet<String>();

 set.add("user1");

 set.add("user2");

 return set;

 }

Awake FILE Tutorial – v3.1 13

The CommonsConfigurator interface contains other methods that you should

implement in your MyCommonsConfigurator class to strengthen the security of your

Awake FILE configuration:

getIPsBlacklist:

Implement this method if you want to ban some IP.

getIPsWhitelist:

Implement this method if you want to authorize only a restricted list of IPs

addSecretForAuthToken:

Implement this method in order to reinforce the security of the authentication
mechanisms. (See 5.1 Session security)

getEncryptionPassword:

Implement this method to encrypt all http request parameters sent from the client to
the server for security reason (obfuscation and transport encryption. See 0

Awake FILE Tutorial – v3.1 14

Http session encryption.)

Please check the Javadoc of Commons Configurator for more information.

3.4 Coding FileConfigurator

The Awake FILE Server settings are coded in a concrete implementation of the
FileConfigurator interface with the methods:

 getServerRoot.

 useOneRootPerUsername.

 allowCallAfterAnalysis.

 runIfCallRefused.

Note that FileConfigurator comes with a default implementation:

DefaultFileConfigurator. If no FileConfigurator is implemented, Awake loads and

uses the DefaultFileConfigurator class.

3.4.1 Defining the user files locations

3.4.1.1 Defining Awake FILE Server root directory

getServerRoot allows to define the root directory of the Awake FILE Server, aka
where the users files will be stored when uploaded.

Code the root directory you want to use in your FileConfigurator implementation.

Code null if you don't want to define a server root and you always want to upload the

files exactly where the client side defines it.

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/server/CommonsConfigurator.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/server/FileConfigurator.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/server/DefaultFileConfigurator.html

Awake FILE Tutorial – v3.1 15

3.4.1.2 Define if each client username has his own root directory

Code your choice in useOneRootPerUsername by returning false or true.

If useOneRootPerUsername returns false: the location of the file is independent of the

username and depends only on getServerRoot.

If useOneRootPerUsername returns true: the name of the username will be used as

root directory per user.

3.4.1.3 Example values of getServerRoot & useOneRootPerUsername.

Let's suppose a client is running Windows and that the server is Unix.
The client sends the following upload order :

 RemoteSession remoteSession = new RemoteSession(url, username,

 password);

 // OK: upload a file

 remoteSession.upload(new File("c:\\myFile.txt"),"/mydir/myFile.txt");

The real location of the uploaded file will depend on getServerRoot &

useOneRootPerUsername values.

Case 1 - getServerRoot returns null:

The file will be uploaded in /mydir/myFile.txt.

(The value of useOneRootPerUsername has no effect.)

Case 2 - getServerRoot returns a directory:

The file location will thus depends on useOneRootPerUsername return value:

case 2.a - useOneRootPerUsername returns false:

The file will be uploaded in:
 /server-root/mydir/myFile.txt.

Where :
server-root is the directory returned by getServerRoot.

Awake FILE Tutorial – v3.1 16

case 2.b - useOneRootPerUsername returns true:

The file will be uploaded at:
 /server-root/username/mydir/myFile.txt.

Where :

 server-root is the directory returned by getServerRoot.

 username is the username passed in new RemoteSession() constructor on the
client side.

3.4.2 RPC rules for calling Java methods from the client side

The RPC mechanism has been designed to be very simple to use but sill secure.

3.4.2.1 How to declare your server class as callable by the client side

Any server Java class method maybe called by the client side if the server class
follows the following requirements:

 The class must implement the ClientCallable or ClientCallableNoAuth
interface.

 The class must have a default visible constructor with no parameters. (It is the
constructor that will be invoked by the Awake FILE Manager servlet).

ClientCallable and ClientCallableNoAuth are marker interfaces and have no
method: they allow to indicate to Awake FILE Manager that the classes are callable
from the client side.

The interface to implement depends on your authentication need:

 Implement ClientCallable if you require that users must be authenticated to

use the class.

 Implement ClientCallableNoAuth if you want your class to be callable by any
user, without authentication.

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/server/ClientCallable.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/server/ClientCallableNoAuth.html

Awake FILE Tutorial – v3.1 17

3.4.2.2 RPC Security check

FileConfigurator provides two methods to secure the RPC mechanism

 allowCallAfterAnalysis: allows to define a specific piece of Java code to

analyze the method name and it's parameter values before allowing or not it's
execution. If you want the execution to be disallowed, return false after the
analysis. It will raise an Exception on the client side.

 runIfCallRefused: Executes a specific piece of Java code if the method not

allowed (runIfCallRefused is only called if allowCallAfterAnalysis returns

false).

Let’s say we want to allow out client users to call our AccountDeletor server class :

public class AccountDeletor implements ClientCallable {

 /**
 * Constructor with no parameters (required by Awake RPC mechanism)
 */
 public AccountDeletor() {
 }

 /**
 * Deletes an account.
 *
 * @param username
 * the username of the account to delete
 * @return true if the account is deleted
 */
 public boolean deleteAccount(String username) {

 // code to delete the account.
 // ...

 return true;
 }
}

We want to double-check that the username is the real one, and not another
username (case an attacker would modify the client program call after reverse
engineering and change the username parameter).

If an illegitimate username is detected, discard the username and log his IP as a
banned IP.

Let’s create a MyFileConfigurator that extend DefaultFileConfigurator and

implement allowExecuteAfterAnalysis:

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/server/FileConfigurator.html

Awake FILE Tutorial – v3.1 18

 /**

 * We will analyse in the example only the

 * org.acme.server.AccountDeletor.deleteAccount method

 *

 * @return true only if the username parameter of deleteAccount is identical

 * to the username of the login method.

 */

 @Override

 public boolean allowCallAfterAnalysis(String username,

 Connection connection, String methodName, List<Object> params)

 throws IOException, SQLException {

 // We will check that the account to delete is the real one

 // aka, a user has not forged the call to delete another user!

 if (methodName.equals("org.acme.server.AccountDeletor.deleteAccount")) {

 String passedUsername = params.get(0).toString();

 if (username.equals(passedUsername)) {

 return true;

 } else {

 // Do not allow the call!

 return false;

 }

 } else {

 // We don' analyse other methods for our example.

 return true;

 }

 }

We can now implement runIfExecuteDisallowed that will ban our user:

 /**

 * The parent method will be called and the username will be added to the

 * BANNED_USERNAMES table.

 */

 @Override

 public void runIfCallRefused(String username, Connection connection,

 String ipAddress, String methodName, List<Object> params)

 throws IOException, SQLException {

 // 1) Call default implementation. It will log the event:

 super.runIfCallRefused(username, connection, ipAddress, methodName,

 params);

 // 2) Insert the username & it's IP into the banned usernames table

 String sqlOrder = "INSERT INTO BANNED_USERNAMES VALUES (?, ?)";

 PreparedStatement prepStatement = connection.prepareStatement(sqlOrder);

 prepStatement.setString(1, username);

 prepStatement.setString(2, ipAddress);

 prepStatement.executeUpdate();

 prepStatement.close();

 }

Awake FILE Tutorial – v3.1 19

3.5 Testing you server configuration

After restarting you server, type the http address of the ServerFileManager Servlet in
a browser:

http://www.yourhost.com/path-to-servlet/ServerFileManager

It will display your configuration and a status line that should display: OK & Running.

If not, the configuration errors are detailed in red for correction.

Awake FILE Tutorial – v3.1 20

4 Client Side Programming

The client API is composed of 4 main classes:

Name Role
RemoteSession Main class for establishing an http session with a remote

host and for executing from client side some basic
operations

RemoteFile Allows to execute java.io.File methods on remote files.
RemoteInputStream Obtains input bytes from a remote file. Used to download a

remote file.
RemoteOutputStream An output stream for writing data to a remote file. Used to

upload a file.

4.1 The RemoteSession class

RemoteSession is the main class for establishing an http session with a remote host.

The RemoteSession instance is passed to all other client API classes and is used by

them for session identification and authentication.

RemoteSession is also used and for executing some basic client side operations:

 Get the Java version of the servlet container on the remote server.

 Call remote Java methods.

 Upload files by wrapping bytes copy from a FileInputStream to a

RemoteOutputStream.

 Download files by wrapping bytes copy from a RemoteInputStream to a

FileOutputStream.

 Returns with one call the length of a list of files located on the remote host.

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/client/RemoteSession.html

Awake FILE Tutorial – v3.1 21

4.1.1 Session creation & authentication

The RemoteSession constructor takes at least three parameters:

 url: the URL of the path to the Awake FILE Manager Servlet.

 username: the user username for authentication.

 password: the authentication password.

The RemoteSession is created only if the Awake FILE Manager has authenticated the

user. The authentication is done by invoking the login method of the

CommonsConfigurator instance.

Example of RemoteSession creation:

 // Define URL of the path to the ServerFileManager servlet
 String url = "https://www.acme.org/ServerFileManager";

 // The login info for strong authentication on server side
 String username = "myUsername";
 char[] password = { 'm', 'y', 'P', 'a', 's', 's', 'w', 'o', 'r', 'd' };

 // Establish a session with the remote server
 RemoteSession remoteSession = new RemoteSession(url, username, password);

4.1.2 Defining a proxy

Communication via an (authenticating) proxy server is done using a java.net.Proxy

instance. If proxy requires authentication, pass the credentials via a java.net.

PasswordAuthentication instance:

 Proxy proxy = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(
 "proxyHostname", 8080));

 PasswordAuthentication passwordAuthentication = null;

 // If proxy require authentication:
 passwordAuthentication = new PasswordAuthentication("proxyUsername",
 "proxyPassword".toCharArray());

 RemoteSession remoteSession = new RemoteSession(url, username,
 password, proxy, passwordAuthentication);
 // Etc.

See 7.2 Defining a proxy with Java 7+ for possible troubleshooting.

Awake FILE Tutorial – v3.1 22

4.1.3 Handling Exceptions thrown by RemoteSession constructors

RemoteSession constructors throw exclusively the following exceptions:

Table of Exceptions thrown by RemoteSession constructors

Exception Signification
java.net.UnknownHostException The URL is malformed.

InvalidLoginException The (username, password) authentication failed
on the remote Awake FILE Manager.
(The implemented CommonsConfigurator.login()

method returned false).
java.net.UnknownHostException There is no Internet Connection.

 There is an error in http address in the
URL parameter.

java.net.ConnectException The Http Request returned a Http Status Code !=
OK (200).
Use RemoteSession.getHttpStatusCode() to

retrieve the Status Code.
java.net.SocketException Network failure during transmission.
java.lang.SecurityException The URL scheme is not https as requested by the

remote Awake FILE Manager.
(The implemented
CommonsConfigurator.forceSecureHttp()

method returned true).

RemoteException An unexpected Exception has been thrown by the
server. Signals an Awake product failure.

java.io.IOException For all other IO / Network / System Error.

See the RemoteSessionExceptionDecoder.java class for a complete example of
Exception handling.

4.1.4 RPC: Calling Java methods on the Awake FILE Server

Use RemoteSession.call to call a remote Java method:

 First parameter is the full name of the method to call with the notation :
packageName.className.methodName.

 Example: org.kawanfw.examples.Calculator.add

 All following parameters are optional and are the parameters of the remote
method.

 The result is always returned as a String.

The requirements for the Java class on the server are explained in 3.4.2.1 How to
declare your server class as callable by the client side

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/InvalidLoginException.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/RemoteException.html
http://www.kawanfw.org/3.1/src/RemoteSessionExceptionDecoder.java

Awake FILE Tutorial – v3.1 23

Example of a RemoteSession.call:

 // OK: call the add(int a, int b) remote method that returns a + b:

 String result = remoteSession.call(

 "org.kawanfw.file.test.api.server.Calculator.add" ", 33, 44);

 System.out.println("Calculator Result: " + result);

Code of the remote org.kawanfw.examples.Calculator class:

package org.kawanfw.file.test.api.server;

import org.kawanfw.file.api.server.ClientCallable;

/**

 *

 * Simple calculator to be called from the client side.

 * Requires the client to be authenticated.

 */

public class Calculator implements ClientCallable {

 /**

 * Constructor

 */

 public Calculator() {

 }

 public int add(int a, int b) {

 return (a + b);

 }

Awake FILE Tutorial – v3.1 24

4.1.5 Uploading & Downloading files

The two RemoteSession APIs allow to upload or download a file:

 RemoteSession.upload(File file, String pathname)

 RemoteSession.download(String pathname, File file)

As these APIs wrap RemoteInputStream and RemoteOutputStream, we will explain the
internal mechanism of files transfer in their dedicated chapters.

4.1.5.1 Syntax of the remote pathname

The remote pathname strings must include the complete path to the file. Example :

remoteSession.upload(new File("c:\\myFile.txt"),

 "/home/mylogin/myFile.txt");

Note that the real location of the remote file "/home/mylogin/myFile.txt" will
depend on your FileConfigurator implementation, as explained in 3.4.1
Fundamentals.

4.1.6 Handling Exceptions thrown by RemoteSession methods

Table of Exceptions thrown by RemoteSession methods

Exception Signification

java.net.UnknownHostException There is no more Internet Connection.

InvalidLoginException The Connection has been closed.
java.net.ConnectException The Http Request returned a Http Status Code !=

OK (200).
Use RemoteSession.getHttpStatusCode() to
retrieve the Status Code.

java.net.SocketException Network failure during transmission.
java.lang.SecurityException Happens when a call() is refused by the server

FileConfigurator.allowCallAfterAnalysis

concrete implementation.

RemoteException An unexpected Exception has been thrown by the
server. Signals an Awake product failure.

IOException For all other IO / Network / System Error.

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/client/RemoteSession.html#upload(java.io.File,%20java.lang.String)
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/client/RemoteSession.html#download(java.lang.String,%20java.io.File)
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/client/RemoteSession.html#download(java.lang.String,%20java.io.File)
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/server/FileConfigurator.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/InvalidLoginException.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/server/FileConfigurator.html#allowCallAfterAnalysis(java.lang.String, java.sql.Connection, java.lang.String, java.util.List)
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/RemoteException.html

Awake FILE Tutorial – v3.1 25

4.2 The RemoteFile class

Remote File is the main class for accessing remote files.

RemoteFile methods have the same names, signatures and behaviors as

java.io.File methods:

a RemoteFile method is a File method that is executed on the remote host.

The few differences with File are:

 There is only one constructor that takes as parameter a RemoteSession and a

pathname. The pathname is defined with a "/" separator on all platforms and

must be absolute.

 File.compareTo(File) and File.renameTo(File) methods take a RemoteFile

parameter in this class.

 File methods that return File instance(s) return RemoteFile instance(s) in this
class.

 The File.toURI() and File.toURL() methods are meaningless in this context

and are thus not ported.

 The static File.listRoots() and File.createTempFile() are not ported.

 The Java 7+ File.toPath() method is not ported as this Awake FILE version

does not support remote Path objects.

Note that the real pathname used on host for File method execution depends on the

Awake FILE configuration of FileConfigurator.getServerRoot() and

FileConfigurator.useOneRootPerUsername(). This follow the same principle of FTP

server mechanisms.

Example:

If FileConfigurator.getServerRoot() returns /home/ and

FileConfigurator.useOneRootPerUsername() returns true and client username is

"mike" :

 new RemoteFile(remoteSession, "/myfile.txt").exists();

will return the result of the execution on remote host of:

 new File("/home/mike/myfile.txt").exists();

This is described in detail at: 3.4.1 Defining the user files locations

Note: the user rights are the rights of the servlet container when accessing remote
files.

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/client/RemoteFile.html

Awake FILE Tutorial – v3.1 26

4.2.1 Using FilenameFilter and FileFilter

When using FilenameFilter and FileFilter filters, the filter implementation must
follow these rules:

 The filter must implement Serializable.

 Thus, the filter class must already exist on the server side.

 When using anonymous inner class for FilenameFilter or FileFilter: it must

be public static.

4.2.2 Handling Exceptions thrown by RemoteFile methods

RemoteFile methods throw corresponding java.io.File Exceptions plus the

following Exceptions that are wrapped by a RuntimeException (except

java.lang.SecurityException which is not wrapped).

Table of Exceptions thrown by RemoteFile methods

Exception Signification
java.net.UnknownHostException There is no more Internet Connection.

InvalidLoginException The Connection has been closed.
java.net.ConnectException The Http Request returned a Http Status Code !=

OK (200).

Use RemoteSession.getHttpStatusCode() to
retrieve the Status Code.

java.net.SocketException Network failure during transmission.
java.lang.SecurityException The remote java.io.File throwed a

java.lang.SecurityException.

RemoteException The remote java.io.File throwed an
Exception.

IOException For all other IO / Network / System Error.

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/InvalidLoginException.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/RemoteException.html

Awake FILE Tutorial – v3.1 27

4.2.3 Example of RemoteFile usage

 // Define URL of the path to the ServerFileManager servlet
 String url = "https://www.acme.org/ServerFileManager";

 // The login info for strong authentication on server side
 String username = "myUsername";
 char[] password = { 'm', 'y', 'P', 'a', 's', 's', 'w', 'o', 'r', 'd' };

 // Establish a session with the remote server
 RemoteSession remoteSession = new RemoteSession(url, username, password);

 // Create a new RemoteFile that maps a file on remote server
 RemoteFile remoteFile = new RemoteFile(remoteSession, "/Koala.jpg");

 // We can use all the familiar java.io.File methods on our RemoteFile
 if (remoteFile.exists()) {
 System.out.println(remoteFile.getName() + " length : "
 + remoteFile.length());
 System.out.println(remoteFile.getName() + " canWrite: "
 + remoteFile.canWrite());
 }

 // List files on our remote root directory
 remoteFile = new RemoteFile(remoteSession, "/");

 RemoteFile[] files = remoteFile.listFiles();
 for (RemoteFile file : files) {
 System.out.println("Remote file: " + file);
 }

 // List all text files in out root directory
 // using an Apache Commons IO 2.4 FileFiter
 FileFilter fileFilter = new SuffixFileFilter(".txt");

 files = remoteFile.listFiles(fileFilter);
 for (RemoteFile file : files) {
 System.out.println("Remote text file: " + file);
 }

Awake FILE Tutorial – v3.1 28

4.3 The RemoteInputStream and RemoteOutputStream classes

A RemoteInputStream obtains input bytes from a remote File.

The remote file bytes are read with standards InputStream read methods and can

thus be downloaded into a local file.

A RemoteOutputStream is an output stream for writing data to a remote File

It allows to create a remote file by writing bytes on the RemoteOutputStream with

standards OutputStream write methods.

These classes are provided to :

1. Offer APIs with no learning curve.
2. Allow easy existing code migration, because they implement InputStream and

OutputStream.

3. Allow easy use of progress bars for file uploads and downloads.

RemoteInputStream & RemoteInputStream implement automatic file chunking and
recovery mechanism as described in 5.2 Data transport.

They are in fact the underlying classes used by RemoteSession.download and

RemoteSession.upload.

RemoteSession.download(String pathname, File file) wraps byte copy from a

RemoteInputStream to a FileOutputStream.

Extract:

 InputStream in = null;
 OutputStream out = null;

 // (IOUtils is a general IO stream manipulation utilities
 // provided by Apache Commons IO)

 try {
 in = new RemoteInputStream(this, pathname);
 out = new BufferedOutputStream(new FileOutputStream(file));
 IOUtils.copy(in, out);
 // Cleaner to close in here so that no Exception is thrown in
 // finally clause
 in.close();
 } finally {
 IOUtils.closeQuietly(in);
 IOUtils.closeQuietly(out);
 }

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/client/RemoteInputStream.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/client/RemoteOutputStream.html

Awake FILE Tutorial – v3.1 29

RemoteSession.upload(File file, String pathname) wraps byte copy from a

FileInputStream to a RemoteOutputStream.

Extract:

 InputStream in = null;
 OutputStream out = null;

 // (IOUtils is a general IO stream manipulation utilities
 // provided by Apache Commons IO)

 try {
 in = new BufferedInputStream(new FileInputStream(file));
 out = new RemoteOutputStream(this, pathname, file.length());
 IOUtils.copy(in, out);
 // Cleaner to close out here so that no Exception is thrown in
 // finally clause
 out.close();
 } finally {
 IOUtils.closeQuietly(in);
 IOUtils.closeQuietly(out);
 }

4.4 Using Progress Bars with file upload & download

Simply use RemoteInputStream or RemoteOutputStream to download or upload the
files, and increment the Progress Bar in the read/write loop.

At the end of the read/write, set the Progress Bar progress indicator to 100:

Example:

Declare the global variables used by the Progress Monitor and in the read/write loop:

 /**

 * Progress between 0 and 100. Updated by doFileUpload() at each 1% input

 * stream read

 */

 private int progress = 0;

 /** Says to doFileUpload() code if transfer is cancelled */

 private boolean cancelled = false;

Awake FILE Tutorial – v3.1 30

The doFileUpload method is called to upload a file:

 /**
 * Do the file upload.
 */
 private void doFileUpload() {
 try {

 // BEGIN MODIFY WITH YOUR VALUES
 String userHome = System.getProperty("user.home");

 String url = "http://localhost:8080/awake-file/ServerFileManager";
 String username = "username";
 char[] password = "password".toCharArray();

 File file = new File(userHome + File.separator + "image_1.jpg");
 String pathname = "/image_1_1.jpg"; // remote file path
 // END MODIFY WITH YOUR VALUES

 RemoteSession remoteSession = new RemoteSession(url, username,
 password);

 long fileLength = file.length();
 InputStream in = null;
 OutputStream out = null;

 try {

 in = new BufferedInputStream(new FileInputStream(file));
 out = new RemoteOutputStream(remoteSession, pathname,
 fileLength);

 int tempLen = 0;
 byte[] buffer = new byte[1024 * 4];
 int n = 0;

 while ((n = in.read(buffer)) != -1) {
 tempLen += n;

 // Test if user has cancelled the upload
 if (cancelled)
 throw new InterruptedException(
 "Upload cancelled by User!");

 // Add 1 to progress for each 1% upload
 if (tempLen > fileLength / 100) {
 tempLen = 0;
 progress++;
 }

 out.write(buffer, 0, n);
 }

 out.close();

 } finally {
 // When finished, set to the maximum value to stop the
 // ProgressMonitor

Awake FILE Tutorial – v3.1 31

 progress = 100;
 if (in != null)
 in.close();
 if (out != null)
 out.close();
 }

 remoteSession.logoff();

 System.out.println("File upload done.");
 } catch (Exception e) {

 if (e instanceof InterruptedException) {
 System.out.println(e.getMessage());
 return;
 }

 System.err.println("Exception thrown during Upload:");
 e.printStackTrace();
 }
 }

Assuming you want to display a progress indicator using SwingWorker, you would

start as a Thread the previous code. To update the progress bar, the

SwingWorker.doInBackground()method would be overridden :

 @Override
 public Void doInBackground() {
 // Reset values at each upload
 cancelled = false;
 progress = 0;
 setProgress(0);

 // progress is ++ at each
 // 1% file transfer in doFileUpload()
 while (progress < 100) {
 try {
 Thread.sleep(50);
 } catch (InterruptedException ignore) {
 }

 // Say to doFileUpload() that
 // user has cancelled the upload
 if (isCancelled()) {
 cancelled = true;
 break;
 }

 setProgress(Math.min(progress, 100));
 }

 return null;
 }

A complete example is available in FileTransferProgressMonitorDemo.java

http://www.kawanfw.org/3.1/src/FileTransferProgressMonitorDemo.java

Awake FILE Tutorial – v3.1 32

5 Awake FILE internals

This chapter describes some technical and implementation aspects of Awake FILE.

5.1 Session security

After server authentication succeeds (through the CommonsConfigurator.login
method), the Awake Server Manager builds an hexadecimal Authentication Token
that is send back to the client and will be used by each following client call in order to
authenticate the calls.

5.1.1 The default Authentication Token creation

The default mechanism to build an Authentication Token is coded in the method
DefaultCommonsConfigurator.computeAuthToken.

The Authentication Token value built by computeAuthToken on server side is:

SHA-1(username + secretValue) first 20 hexadecimal characters.

where:

- username: the username of the client.

- secret : a secret value defined by the implementation of method public String

addSecretForAuthToken() in your CommonsConfigurator implementation.

A each client call, the Authentication Token is sent to the Awake Server along the
requests. The Awake Server Manager then verifies that Authentication Token
verifies:

Authentication Token = SHA-1(username + secretValue) first 20

hexadecimal characters.

If the Authentication Token does not match, the session is discontinued.

This mechanism, which uses SHA-1 strong cryptography, makes impossible for an
attacker to forge a session without a legitimate (username, password) couple.

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/server/CommonsConfigurator.html#login(java.lang.String, char[])
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/server/DefaultCommonsConfigurator.html#computeAuthToken(java.lang.String)

Awake FILE Tutorial – v3.1 33

5.1.2 Creating your own Authentication Token

If you want to create the Authentication Token with your own enforced security rules
(adding random or secret values stored in database, etc.) : override the method

DefaultCommonsConfigurator.computeAuthToken in your own CommonsConfigurator
implementation.

5.2 Data transport

5.2.1 Transport format

Awake transfers the least possible meta-information :

 Request parameters are transported in UTF-8 format.

 JSON format is used for data & classes transport (using Google Gson library).

5.2.2 Content Streaming & memory management

All requests are streamed, especially for file uploads and downloads:

 Output requests (from client side) are streamed to avoid buffering any content
body by streaming directly to the socket to the server.

 input response (for client side) are streamed efficiently read the response
body by streaming directly from the socket to the server.

5.2.3 Chunked upload of large files

Large files are split in chunks that are uploaded in sequence when using
RemoteOutputStream or RemoteSession.upload(). The default chunk length is

10Mb. You can change the default value with
SessionParameters.setUploadChunkLength(long) before passing SessionParameters

to RemoteSession class constructor.

SessionParameters usage is described in 6.3 Session parameters

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/client/RemoteOutputStream.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/SessionParameters.html#setUploadChunkLength(long)
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/SessionParameters.html

Awake FILE Tutorial – v3.1 34

5.2.4 Chunked download of large files

Large files are split in chunks that are downloaded in sequence when using
RemoteInputStream or RemoteSession.download(). The default chunk length is

10Mb. You can change the default value with
SessionParameters.setDownloadChunkLength(long) before passing

SessionParameters to RemoteSession class constructor.

5.2.5 File chunking and statefull/stateless architecture

Note that file chunking requires that all chunks be uploaded/downloaded to/from to
the same web server. Thus, file chunking does not support true stateless architecture
with multiple identical web servers. If you want to set a full stateless architecture with
multiple identical web servers, you must disable file chunking.

This is done by setting a 0 upload and download chunk length value using:

 SessionParameters.setUploadChunkLength(long)

 SessionParameters.setDownloadChunkLength(long)

5.2.6 Large file upload & download recovery

Awake FILE supports recovery for large files upload and download.

In case of recoverable I/O or communication Exception, aka SocketException, the

recall of the upload or download sequence will restart the transfer at the last chunk
non completely transmitted.

The only condition is to recall the upload/download in the same JVM run (so
recovery will not be supported if application is completely stopped and restarted.)

For example, when using default chunk length of 10Mb: if the upload of a 2Gb file is
interrupted at 1,8Gb, only the remaining 200Mb will be resent when re-invoking

RemoteSession.upload() or RemoteOutputStream sequence in the same JVM life
cycle.

Chunks are stored in temporary directories. See 6.7 Managing temporary files for
more information.

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/file/api/client/RemoteInputStream.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/SessionParameters.html#setDownloadChunkLength(long)
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/SessionParameters.html#setUploadChunkLength(long)
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/SessionParameters.html#setDownloadChunkLength(long)

Awake FILE Tutorial – v3.1 35

5.2.7 Upload and download recovery simple code example

These simple examples show a minimalist way to recover from network failure. More
sophisticated code would also trap IOExceptions and recover other unexpected I/O
or security/system errors, etc.

 // Uploads a big file. If a SocketException (including subclass
 // ConnectException) is raised, then allow to continue upload starting
 // from the last chunk that was not uploaded
 boolean continueUpload = true;

 while (continueUpload) {
 try {
 remoteSession.upload(bigFile, "/" + bigFile.getName());
 continueUpload = false;
 } catch (SocketException se) {

 String title = "Warning";
 String text = "File upload interrupted because of network error. "
 + "Do you want to retry and continue upload?";

 int result = JOptionPane.showConfirmDialog(null, text, title,
 JOptionPane.YES_NO_OPTION);
 if (result != JOptionPane.YES_OPTION) {
 continueUpload = false;
 }
 }
 }

 // Downloads a big file. If a SocketException (including subclass
 // ConnectException) is raised, then allow to continue download starting
 // from the last chunk that was not downloaded
 boolean continueDownload = true;

 while (continueDownload) {
 try {
 remoteSession.download(, "/" + bigFile.getName(), bigFile);
 continueDownload = false;
 } catch (SocketException se) {

 String title = "Warning";
 String text = "File download interrupted because of network error. "
 + "Do you want to retry and continue download?";

 int result = JOptionPane.showConfirmDialog(null, text, title,
 JOptionPane.YES_NO_OPTION);
 if (result != JOptionPane.YES_OPTION) {
 continueDownload = false;
 }
 }
 }

Awake FILE Tutorial – v3.1 36

5.3 Stateless session management

The Awake FILE Manager Servlet is stateless: no user or session info are stored on
the server. This allows to configure Awake FILE with any Http load balancing &
failover services.

As explained in 5.2.5 File chunking and statefull/stateless architecture, stateless
session management require that files are not chunked when uploaded.

Awake FILE Tutorial – v3.1 37

6 Advanced techniques

6.1 Using multiple RemoteSession in Threads

You may use multiple different RemoteSession in your programs. And you may use
them in background threads.

Please note that RemoteSession is not thread safe: Only one thread may access an

RemoteSession instance at a time. Otherwise, results are unpredictable.

However, RemoteSession is cloneable : just clone your current RemoteSession to get

a new one to use for simultaneous file operations:

 // Establish a session with the remote server

 RemoteSession remoteSession = new RemoteSession(url, username, password);

 // Establish a secondary RemoteSession for background thread:

 RemoteSession secondaryRemoteSession = remoteSession.clone();

6.2 Using RemoteSession to different Awake FILE Servers

You may use multiple RemoteSession that access different Awake FILE Servers in the

same program.

There is nothing to set on the client side. Simply use different url parameters in your

RemoteSession constructors.

For each url defined, there must be a corresponding Server File Manager Servlet on
the server side:

 // The main Server File Manager

 String url = "https://www.acme.org/ServerFileManager";

 // The second Server File Manager

 String url2 = "https://www.acme.org/ServerFileManager2 ";

 // The login info for strong authentication on server side

 // (Assuming it's the same for the two Server File Managers)

 String username = "myUsername";

 char[] password = { 'm', 'y', 'P', 'a', 's', 's', 'w', 'o', 'r', 'd' };

 // Establish a session with the first remote server

 RemoteSession remoteSession = new RemoteSession(url, username,

 password);

// Establish a session with the second remote server

 RemoteSession remoteSession2 = new RemoteSession(url2,

 username, password);

Awake FILE Tutorial – v3.1 38

There is some configuration on the server side: a second Server File Manager
Servlet must be defined in web.xml with the corresponding new Configurators

classes passed as parameters to the new Servlet:

<servlet>

 <servlet-name>ServerFileManager2</servlet-name>

 <servlet-class>org.kawanfw.file.servlet.ServerFileManager</servlet-class>

 <init-param>

 <param-name>CommonsConfiguratorClassName</param-name>

 <param-value>org.acme.config.MyCommonsConfigurator2</param-value>

 </init-param>

 <init-param>

 <param-name>FileConfiguratorClassName</param-name>

 <param-value>org.acme.config.MyFileConfigurator2</param-value>

 </init-param>

</servlet>

<servlet-mapping>

 <servlet-name>ServerFileManager2</servlet-name>

 <url-pattern>ServerFileManager2</url-pattern>

</servlet-mapping>

Awake FILE Tutorial – v3.1 39

6.3 Session parameters

SessionParameters allows also to define some settings for the Awake FILE session:

 Timeout value, in milliseconds, to be used when opening a communications
link with the remote server. Defaults to 0 (no timeout).

 Read timeout, in milliseconds, that specifies the timeout when reading from
remote Input stream. Defaults to 0 (no timeout).

 Password to use for encrypting all parameters request between client and
remote host.

 Boolean to say if Clob upload/download using character stream or ASCII
stream must be html encoded. Defaults to true.

 Boolean to say if http content must be compressed. Defaults to true.

 Download chunk length to be used by RemoteInputStream. Defaults to 10Mb.
0 means files are not chunked.

 Upload chunk length to be used by RemoteOutputStream Defaults to 10Mb. 0
means files are not chunked.

 Boolean to say if client sides allows HTTPS call with all SSL Certificates,
including "invalid" or self-signed Certificates. Defaults to false.

 Maximum authorized length for a string for upload or download (in order to
avoid OutOfMemoryException on client and server side.) Defaults to 2 Mb.

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/SessionParameters.html

Awake FILE Tutorial – v3.1 40

This example shows how to change some timeout default values:

String url = "https://www.acme.org/ServerFileManager";
 String username = "myUsername";
 char[] password = { 'm', 'y', 'P', 'a', 's', 's', 'w', 'o', 'r', 'd' };

 SessionParameters sessionParameters = new SessionParameters();

 // Sets the timeout until a connection is established to 10 seconds
 sessionParameters.setConnectTimeout(10);

 // Sets the read timeout to 60 seconds
 sessionParameters.setReadTimeout(60);

 // We will use no proxy
 Proxy proxy = null;
 PasswordAuthentication passwordAuthentication = null;

 RemoteSession remoteSession = new RemoteSession(url, username,
 password, proxy, passwordAuthentication, sessionParameters);
 // Etc.

Awake FILE Tutorial – v3.1 41

6.4 Http session encryption

All values sent with the http request from the client side can be encrypted. They will
be decrypted by the Server File Manager Servlet. The encryption algorithm is AES
256 bit.

You have to define a common symmetric password that will be used on the client
side and the server side.

Client side

Password is set using SessionParameters:

 SessionParameters sessionParameters = new SessionParameters();

 char[] passwdHttp = { 'h', 't', 't', 'p', 'P', 'a', 's', 's', 'w', 'd' };

 sessionParameters

 .setEncryptionPassword(passwdHttp);

// Establish the RemoteSession using the modified Http parameters:

RemoteSession remoteSession = new RemoteSession(url, username,

 password, httpProxy, sessionParameters);

 // Etc.

Server Side

Add a getEncryptionPassword method to your CommonsConfigurator

implementation :

 @Override

 public char[] getEncryptionPassword() {

 char[] passwdHttp = { 'h', 't', 't', 'p', 'P', 'a', 's', 's', 'w', 'd' };

 return passwdHttp;

 }

http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/client/SessionParameters.html
http://www.kawanfw.org/3.1/javadoc/org/kawanfw/commons/api/server/CommonsConfigurator.html

Awake FILE Tutorial – v3.1 42

6.5 How to obfuscate your apps on the client side

Obfuscation of your client code may be necessary if your distribute your application
on the Internet.

You may (and should) obfuscate all your Awake FILE code. This is supported and we
have done it in several real projects.

The obfuscation rules are the same for Android Edition and Desktop Edition:

 Remove from the jar to obfuscate all the classes in packages that include

server or servlet sub names.

 Apache Commons FileUpload commons-fileupload-x.y.z.jar and JSch jsch-

x.y.z.jar should be removed.

 The third parties libraries compiled code should however remain in clear:
o Apache Commons Lang & Commons IO.
o JSON.simple.
o Google Gson.

Note that by using http session encryption as described before, it would be
impossible to an attacker to trap your Awake FILE code using probes in modified
versions of the third parties libraries classes: all requests strings are encrypted before
they are passed to them. So, always use http session encryption if you want to set a
real strong obfuscation.

You may of course modify all Awake FILE and third parties source code if you want
to obfuscate all code with your own techniques and completely hide and obfuscate
the third party libraries. You may do it in compliance to the licenses of Awake (LGPL
v2.1) and other third parties (Apache License Version 2.0.)

Awake FILE Tutorial – v3.1 43

6.6 Anonymous Notifications to Kawan Servers

The Server File Manager Servlet will notify our remote Kawan servers that a user has
succeeded his first login. This is done once during the web server JVM session per
client user login, at first login. It is also done in a separated and secured thread: your
Server File Manager Servlet will not be slowed down by the notification and no
Exceptions will be thrown. Notification contains only anonymous data that are not
reversible and thus cannot identify your server: hash value of your server ip address
and user login count. There are no notifications for localhost or 127.0.0.1 server
name.

Please note that the notification mechanism is important for us as software editor: it
says if our software is used, and the average client users per installation. However, if
you *really* don't want our remote Kawan servers to be notified by your server, just
create the following file with any content:

user.home/.kawansoft/no_notify.txt, where user.home is the one of your Java EE
web server. Notification will be deactivated and at server startup the message
"[AWAKE START] Notification to Kawan Servers: OFF"

will be inserted in the log defined by CommonsConfigurator.getLogger()
You can check the notification mechanism following source code in class
org.kawanfw.file.servlet.KawanNotifier.java.

6.7 Managing temporary files

Awake uses temporary files on client side only. These temporary files contain:

 Result of the RemoteFile.list methods.

 Result of the RemoteFile.listFiles method.

 Chunks created by RemoteInputStream and RemoteOutputStream.

Temporary files are created to allows streaming and/or to release as soon as
possible network resources (Servlet streams).

These temporary files are automatically cleaned (deleted) by Awake.

If you want to insure the cleaning of temporary files, they are located in the
user.home/.kawansoft/tmp directory.

(Where user.home is the System.getProperty(“user.home”) value of the user that
starts the client application and/or the servlet container on the server side.)

Awake FILE Tutorial – v3.1 44

7 Troubleshooting

7.1 Session hang with Java 7+

It has been reported that Awake FILE session could in rare cases hang on client side
with Java 7 and Java 8. If it happens, set this system property before creating an

RemoteSession instance:

 System.setProperty("java.net.preferIPv4Stack", "true");

7.2 Defining a proxy with Java 7+

Awake FILE could hang on RemoteSession constructor call when using

ProxySelector.getDefault()in intend to define a proxy with Java 7 or Java 8.

This could happen with early versions of Java 7 and Java 8.

 System.setProperty("java.net.useSystemProxies", "true");
 List<Proxy> proxies = ProxySelector.getDefault().select(
 new URI("http://www.google.com/"));

 String url = "http://www.acme.org:9090/ServerFileManager";
 String username = "login";
 char[] password = "password".toCharArray();

 Proxy proxy = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(
 "127.0.0.1", 8080));

 // Code could hang
 RemoteSession remoteSession = new RemoteSession(url, username,
 password, proxy, null);
